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ABSTRACT: Recently, methods that deal with formal analysis of decision making

have been developed. Bayesian networks – also known as belief networks and causal

probabilistic networks – provide a method of representing relationships between

characteristics even if the relationships involve uncertainty, unpredictability or im-

precision. This quantitative method assists the scientist not only in describing

a problem and communicating information about its structure but also in calculating

the effect of the truth of one proposition or piece of evidence on the plausibility of oth-

ers. Notably, Bayesian networks are a network-based framework for representing

and analysing situations involving uncertainty (i.e. evidence evaluation, criminal in-

vestigation, etc.).

Information is presented in a graph as a set of nodes (representing the variables)

linked by directed arcs (or edges) and the direction of the arc represents an influen-

tial relationship. The absence of an arc between two nodes implies that the two vari-

ables associated with these nodes are independent of each other, conditional on

knowledge of the values of the other variables.

The aim of this paper is to show how such a methodology could facilitate the rep-

resentation and the evaluation of the scientific evidence. A simple scenario involving

a transfer evidence is developed to show the role of different variables.

KEY WORDS: Evidence evaluation; Bayes’ theorem; Likelihood ratio; Bayesian
networks.

Problems of Forensic Sciences, vol. XLVI, 2001, 173–179
Received 13 November 2000; accepted 15 September 2001

INTRODUCTION

Forensic literature has pointed out the utility of methods that deal with

formal analysis of decision making. Notably, it has been underlined that

complex framework of circumstances – situations involving many vari-

ables – requires a logical assistance [2]. Methods of formal reasoning has

been proposed to assist the forensic scientist to understand all of the depend-



encies which may exist between different aspects of the evidence [6]. Nota-

bly, it has been shown that Bayesian networks provide a valuable aid for

representing relationships between characteristics in situation of uncer-

tainty, unpredictability or imprecision. They assist the user not only in de-

scribing a complex problem and communicating information about its struc-

ture but also in calculating the effect of the truth of one proposition or piece

of evidence on the plausibility of others.

Using a simple case examples, we would like to demonstrate how such

a graphical method could be used to assess scientific evidence.

BAYESIAN NETWORKS

Bayesian networks are a method for discovering valid, novel and poten-

tially useful patterns in data where uncertainty is handled in mathemati-

cally rigorous but simple and logical way.

Imagine a directed arc linking nodes A and B in a graph. A and B repre-

sent events and the arc directed from the node A to node B expresses that the

event A is a “cause” of event B. For the arc (A to B) the scientist could give

a matrix expressing the probability , that specifies for each state of A the

probability of each state of B. In other words, each node represents a random

variable that can assume the alternative values “occurs” and “does not oc-

cur” (or “true” and “false”).

Such a pictorial scheme allows the users to directly translate qualitative

structure into dependence (or causal relationship), independence and condi-

tional independence relations of one variable to another under specified cir-

cumstances. This specifies the relevance of the variables in the context of the

case.

Links between variables can then be established deterministically or

probabilistically using data coming from surveys or expert opinions and esti-

mations  [4, 8].

Practically, Bayes networks allow the forensic scientist to:

1. learn a way of thinking about the problem involving uncertain infor-

mation;

2. learn how to apply these methods to drawn inferences about the world

of interest;

3. learn how to act rationally under uncertainty;

4. learn how the model can be induced from data.

Scientists have to cope with uncertainty; they have to take into account:

1. theoretical ignorance, because no complete theory is known about the

problem domain (e.g. police investigation or crime analysis);
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2. laziness, because the space of relevant factors is very large and would

require too much work to list the complete;

3. a practical ignorance, because there is uncertainty about a particular

individual in the domain of interest;

4. decision-making under uncertainty, because it is necessary to make

rational decisions able to decide even when there is not enough infor-

mation to prove that an action will work.

Bayesian decision theory could be a useful tool in the hand of forensic sci-

entists essentially because humans often fail to follows a logical framework

in complex situations; they need a support as it has been already suggested

in forensic literature [3].

The graphical nature of the approach facilitates formal discussion of the

system structure. Ability to specify the relationships between variables in

uncertain terms is ideal to describe the relationship between dynamics

which may not be well understood. On a quantitative level, the approach en-

ables the user’s knowledge to be incorporated into the model on the same ba-

sis as more objectively derived data (e.g. data coming from surveys). Such

features allow the creation of a model which may contain mathematical rela-

tionships as well as subjective elements corresponding to the experience of

the people [11].

HOW TO WORK WITH PROBABILITIES IN BAYESIAN NETWORKS:

THE SIMPLE “ONE-TRACE” CASE EXAMPLE

Suppose a crime has been committed and a blood stain has been found at

the scene of the crime. The DNA profile of the stain is different from the vic-

tim’s blood profile and may have been left by the offender. Let’s suppose, for

the sake of simplicity, that it’s part of the background knowledge that there

was only one offender. A blood sample has been taken from a suspect; this

sample and the recovered stain share the same DNA profile.

Let H be the probandum: “The suspect is the offender”, F the proposition:

“The crime blood stain came from the suspect”, G: “The crime stain came

from the offender” and E: “The suspect’s blood sample and the blood stain

found at the crime scene share the same DNA profile”.

The appropriate graphical representation of these assertions is pre-

sented in Figure 1 where the arc from the node (variable) H to node F ex-

presses that the event denoted by H is a “cause” of the event denoted by F, or

“brings about”, or in some way “influences” it. We don’t have to be committed

to a particular causal theory: the arcs represent probabilistic relevance rela-

tions which might be understood, but not necessarily, as causal relations.

For the arc (H to F) the scientist could give a matrix expressing the probabil-

Bayesian networks and the evaluation of scientific evidence: A theoretical approach 175



ity P(F|H), to be read as “the probability of F given H”, that specifies for each

truth-value of H the probability of each truth-value of F: for example the

node H of Figure 1 correspond to a random variable with the values h = 1

(h = “true”) and h = 0 (or h = “false”). For sake of simplicity, we shall write

H and H (meaning “not-H”) from now on.

Schemes as Figure 1 allow the users to directly translate qualitative

structure into dependence (or causal relationship), independence and condi-

tional independence statements of one variable to another under specified

circumstances. This specifies the relevance of the variables in the context of

the case.

Variables H and G are probabilistically independent (there is not a direct

arc between H and G), but they are conditionally dependent given F, because

they have a common descendant, namely, F. Moreover, the variable

F “screens off” E from H and G: if F is true (or false), then E is independent

from H and G, that is, P(E|F,H) = P(E|F).

In addition to the probabilistic dependencies represented in Figure 1, the

following assumptions seem quite straightforward:

1. If is true, then certainly E: P(E|F) = 1.

2. If F is false, then the probability of E is given by the random match

probability f of the DNA profile among members of the relevant popu-

lation: P(E|F) = f.

3. If the suspect is the offender and the crime stain came from the of-

fender, then certainly the stain came from the suspect: P(F|G,H) = 1.
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G : The crime stain came from the offender

F : The crime stain came from the suspect

E : The suspect’s blood sample and the bloodstain found at the scene of

the crime share the same DNA profile

H : The suspect is the offender

Fig. 1. Bayesian network describing “one-trace” scenario.



4. If the suspect is the offender and the stain did not come from the of-

fender, then certainly the crime stain didn’t come from the suspect:

P(F|G,H) = 0.

5. If the suspect is not the offender and the stain came from the offender,

then certainly the crime stain didn’t come from the suspect:

P(F|G,H) = 0.

By the assumptions {1} and {2}, and by the fact that F “screens off” E from

H, we obtain that the probability of E given H is given by the following for-

mula:

P(E|H) = P(F|H) + P(F|H) ⋅ f. {1}

Then we calculate the probability of F given H by “extension of the con-

versation” [9] to G:

P(F|H) = P(F|G,H) ⋅ P(G|H) + P(F|G|H) ⋅ P(G|H). {2}

Given assumption {4}, the probability of F given H is reduced to:

P(F|H) = P(F|G,H) ⋅ P(G|H) + P F G H( | , )

0
6 74 84

⋅ P(G|H)=P(F|G,H) ⋅ P(G|H). {3}

By assumption {3}, and by the hypothesis that H and G are independent

(see Figure 1), that simplifies into:

P(F|H) = P F G H( | , )

1
6 74 84

⋅ (P(G|H) = P(G). {4}

By the same assumption, and by assumption {4}, we get immediately that

the probability of F given H is equal to the probability of G:

P F H P G( | ) ( )= . {5}

Scientist is concerned with the assessment of the likelihood ratio,

P E H P E H( | ) / ( | ), and now we know that the numerator (3.1) of the LR can

be written as:

P(E|H) = P(G) + P(G) ⋅ f. {6}

Given the same hypotheses about probabilistic independence, and using

assumption {5}, the formula for the denominator, P(E|H), can also be writ-

ten as:

P(E|H) = P(F|H) + P(F|H) ⋅ f . {7}

where P F H P F G H P G( | ) ( | , ) ( )= ⋅ and P F H P G P F G H P G( | ) ( ) ( | , ) ( )= + ⋅ .

The likelihood ratio then becomes, from {6} and {7}:

LR
P E H

P E H

P G P G f

P F G H P G P G P F
= =

+ ⋅
⋅ + +

( | )

( | )

( ) ( )

( | , ) ( ) ( ) ( |[ ]G H P G f, ) ( )⋅ ⋅
. {8}
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Assume that P G r( )= (the relevance term [10]), and P F G H p( | , )= ; the lat-

ter is the probability that the stain would have been left by the suspect even

though he was innocent of the offence. It is the probability the crime stain

was left innocently by someone who is now a suspect. Here is assumed that

the propensity to leave a stain is independent of the blood profile of the per-

son leaving the stain [1]. We then obtain a (simplified) version of Evett’s for-

mula [7]:

LR
P G P G f

P F G H P G

r
r

p r

=
+ ⋅

⋅

−

−

( ) ( )

( | , ) ( )

( )

( )

678 678

1 24 34

1

1

123 123 1 24 34 123
+ ⋅ + ⋅ ⋅

− −

P G f P F G H P G f

r p r

( ) ( | , ) ( )

( ) ( )1 1

;

LR
r r f

p r r f p r f
=

+ − ⋅
⋅ − + ⋅ + − ⋅ − ⋅

( )

( ) ( ) ( )

1

1 1 1
;

[ ]LR
r r f

r f r p p f
=

+ − ⋅
⋅ + − ⋅ + − ⋅

( )

( ) ( )

1

1 1
. {9}

If the assessment of the relevance reaches its maximum, r = 1, then the

likelihood ratio is reduced to its simplest form, 1/f.

The Bayes network in Figure 1 can be helpful in understanding where

the formula {9} comes from: it shows graphically the dependence, and inde-

pendence, assumptions made by the scientist, and the conditional probabil-

ity assessments needed to evaluate the Evett’s formula. Furthermore, it is a

standard model that can be used in any “one-trace” case: for instance, the

trace could be fibres or fingerprints.

CONCLUSION

The use of a graphical model is appealing because it allows the scientist

to concentrate on the structure of the problem before having to deal with the

assessment of quantitative issues [5].

Likelihood ratio formula like {9} might look complicated to people who

are not trained into probabilistic analysis. Bayesian networks like the one

depicted in Figure 1 represent in an economic and intuitive way the hypothe-

ses about the probabilistic relations existing among the variables of interest

in formula {9}.
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